
Generating Synthetic Web Request Streams 
 
 
 

S.R.Sarangi, P.N.Sireesh, S.P.Pal 
Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur, 721302, INDIA 
Email: spp@cse.iitkgp.ernet.in 

 
 

Abstract 
 

Synthetic web request streams find use in various fields. They can be 
used to evaluate web-caching algorithms, to evaluate the efficiency of network 
topologies and to plan future networks. This paper uses several empirically 
observed models of WAN traffic to create a realistic web request stream 
generator. The generator produces page requests matching empirical 
measurements of (a) relative file popularity and (b) temporal locality. An 
efficient algorithm is proposed to generate web request traces. The properties 
of the trace thus generated are identical to those of the empirically observed 
distributions. This method is scalable to a large number of requests and pages 
as its worst-case complexity is a linear function of the number of requests and 
a slowly growing function of the number of pages. 

 
1. Introduction 
 

The World Wide Web is assuming an increasingly important place in modern society. It 
has become a major source of information and entertainment. Financial transactions worth 
millions of dollars are being carried out over the web. Everyday millions of people logon to the 
net to check their e-mail and to get information about world affairs. The Internet has basically 
pervaded every aspect of human society.  Improving the performance of the web has become a 
very important issue. Significant improvements have been realized in the performance of the web 
due to the incorporation of newer network protocols and web-caching strategies, leading to   
better quality of service to millions of users. For evaluation of such protocols and strategies a 
realistic network environment must be created. Simulation is a natural scientific method in this 
direction. Several researchers have built WAN simulators that can mimic wide area traffic. They 
test their algorithms and protocols on these simulators. The simulators used by them are of two 
types. The first type is called a “Trace based” simulator. Web traces are collected from links and 
stored in files. The simulator reads these files and generates the web workload. This approach is 
slow because it involves file operations. It is also restricted since it is dependent on datasets 
collected prior to the simulation. The second approach generates web requests according to 
analytic models. Their properties match empirically observed models of traffic. 

Nowadays research focuses on simulators based on analytical models. Such simulators 
are fast, scalable and easy to use. They do not need collection of massive data sets. To build such 
simulators researchers have identified several characteristics of web requests. Analytical models 
have been proposed to model these characteristics. Simulators try to incorporate one or more of 
these observed characteristics. 
 
Here is a brief summary of the work done in this field. 
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1.1 Summary of Previous Work 
 

Several studies have been carried out on web traces [1, 2, 3]. They suggest the following 
properties of web request streams. 

a) File Sizes: The file sizes on a web server follow a heavy tailed distribution. Such 
distributions are well described by the Pareto distribution. The cumulative distribution 
function of this distribution is given by: 

F(x) = 1 - x-β  0 < β < 2           (1.1.1) 
 
Such distributions are characterized by their infinite variance. 

b) Request sizes: The request size distribution is also seen to follow a heavy tailed property. 
The request size distribution is the distribution of the sizes of the files actually transferred 
over the network. This is different from the server file size distribution. This is because 
the same file can be requested multiple times. 

c) Popularity: The popularity of web pages is observed to follow the Zipf’s law. The Zipf’s 
law states that the popularity of the ith most popular page varies inversely with i. Stated 
mathematically the probability mass function p is given by: Error! Bookmark not 

defined.    p(i) = 
i
Ω

     

   (1.1.2) 
 

d) Temporal locality: This property refers to the probability that if a given a page has been 
requested, it will be requested again in the near future. To characterize this the stack-
distance model has been proposed.  

The stack-distance model can be explained as follows. Given that the pages are 
organized in the form of a stack <p1, p2, .….  pn>. Suppose the next request is for the page 
pi. Then the stack-distance di for this request is i. Stack distance basically measures the 
depth within the stack where the next request is found. After this page i is moved to the 
top of the stack, the configuration of the new stack is <pi, p1, p2,..... pi-1, pi+1, .... pn>. 

Thus given the configuration of the initial stack, a stream of stack-distances is 
sufficient to describe the request stream. The information contained by both the 
representations is the same. The stack-distance method is a better representation of the 
request stream as it is a sequence of numbers and not pages. Stack-distance distribution 
characterizes temporal locality. A small stack-distance implies more temporal locality. 

Thus stack-distance models can give an estimate of temporal locality.  The 
lognormal distribution of stack-distance has been observed to model the distribution of 
stack-distance well. The lognormal distribution is given by: 

lgn(x) = 
2

2

2
))(ln(

2
1 σ

μ

πσ

−− x

e
x

      (1.1.3) 

 
Stack-distance traces typically have: 

μ = 1.5 , σ = 0.8  (refer to [1]) 
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e) Spatial locality: This refers to the correlation of page requests. 

Let us consider the case of a newspaper. In any web trace of the traffic to the 
newspaper server, the main site will be visited first and there is a high likelihood of the 
headlines page being visited next. This is an example of spatial locality. 

Researchers have captured the notion of spatial locality in page requests by 
modeling the stack-distance stream with self-similar models. Self-similarity has been 
discussed in great detail in [4, 5, 6, 7]. Here the definition of self-similarity is presented 
as defined in [5]. 

Definition: Given a zero mean stationary time series X.  We define the m aggregated 
series X(m) by summing the original series over non-overlapping blocks of size m. X is 
said to be H self-similar if for all positive m, X(m) 

 has the same distribution as X rescaled 
by mH. 

Xt   =d    m-H         for all m ∈ N    (1.1.4) ∑
+−=

tm

mti
iX

1)1(

=d  means equality of all finite dimensional distributions 
 
A synthetic web reference trace generator called SURGE [1] has been built that generates 

traces satisfying the above properties. SURGE starts with a stack of web pages. It generates a 
stack-distance d from the lognormal distribution in every iteration. The page at depth d in the 
stack is removed and pushed to the stack top. This page is added to the request stream. To ensure 
homogeneity and adherence to the Zipf distribution of page popularity, there are some extra steps 
in the algorithm. After generating the stack-distance a window is defined around the requested 
page within the stack. Pages within this window are assigned weights depending upon the number 
of requests left. The page with the maximum weight is moved to the top of the stack and added to 
the request stream. This algorithm is efficient and generates web request traces whose properties 
are in accordance with empirically observed distributions. 
 
1.2  Our Contribution 

In this paper we have developed an algorithm to generate a synthetic page request stream. 
This algorithm is computationally efficient, scalable and accurate. The algorithm runs in time 
proportional to the number of requests. There are two versions of our algorithm. If n is the 
number of requests to be made and m the total no of web pages, then the worst case complexity of 
our faster algorithm is O(nm0.24) and that of our slower algorithm is O(nm) (see Appendix B).  
The quality of the web request stream does not deteriorate even for a large number of requests 
and web pages. To the contrary, the quality of the request stream improves as we increase the 
number of requests (see Section 6). 
 
1.3  Organization of the Paper 

Before we delve into the minutiae of the algorithm and associated analytical models we 
would like to state the basic principles of Markov chains [8, 9]. The concept of Markov chains 
will be used to prove some results. Section 2 provides a brief introduction to the concept of 
Markov chains. In section 3, we describe our algorithm in detail. In section 4, we analyze the 
algorithm. In section 5, we enumerate the salient features of our algorithm. Section 6 features the 
results obtained using our algorithm. 
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2.  Markov Chains 
A Markov Chain is a discrete time, discrete state stochastic process where the value at 

instant (t+1) is dependent only on the value at instant t. It is not dependent on any other value 
before time t. This property is known as the Markov property. 

Let the successive observations of the random variable X be X1, X2, ……,Xn,… at times 
1,2,…n,.. respectively. If Xn= j, then the state of the system at time n is j. X1 is the initial state of 
the system. The Markov property can be stated as: 

P(Xn = in |  X1 = i1, ….., Xn-1 = in-1 ) = P(Xn = in | Xn-1 = in-1)    (2.1) 
 
Let us define: 
 

pjk
(m,n) = P( X n = k | X m = j), 1 ≤  m ≤  n 

pjk
(m,n) denotes the probability that the process makes a transition from state j at time m to 

state k at time n. Thus pjk
(m,n) is known as the transition probability function of the Markov chain.  

We will only be concerned with homogenous Markov chains – those in which pjk
(m,n) depends 

only on the difference (|m - n|). For such chains we use the notation 

pjk
(n) = P(X m+n = k | X m = j) 

to denote the n-step transition probabilities. In words, pjk
(n) is the probability that a homogenous 

Markov chain will move from state j to state k in n steps. The one step transition probabilities 
pjk

(1) are simply written as 

pjk = P(Xn = k | Xn-1 = j)         n > 1 

The one step transition probabilities are compactly specified in the form of a transition 
probability matrix. 

p11   p12  p13  ……….. 
p21   p22  p23  ……….. 

P = [pij] =    .      .     .     .………. 
.      .     .    ……….. 
.      .     .    ……...... 

 
 
 

The entries of the matrix P satisfy the following two properties 

Let P(n) be the matrix whose (i,j) entry is pij
(n). Thus P(n) is the matrix of n-step 

transition probabilities. Then by the Chapman-Kolmogorov equation 

pij
(m+n) =  pik

(m) pkj
(n)        (2.2) ∑

i

hence we can write 

P(n) = P . P(n-1) = Pn        (2.3) 

A Markov chain is said to be irreducible if every state can be reached from every other 
state in a finite number of steps. A state is said to be aperiodic if the G.C.D of all integers such 
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that pjk(n) > 0 is 1. The n-step transition probabilities pjk
(n) of finite, irreducible, aperiodic Markov 

chains become independent of k and n as n → ∞ . 

The limiting state probability νk can be expressed as 

νk  =   lim pjk
(n)         (2.4) 

                 n→∞ 

Let ν be the row vector ν =  [ν0, ν1, ν2, …..  νn ] 

Then the following equation is satisfied. 

ν  =  ν P         (2.5) 

Let fjk
(n) be the probability that the Markov chain reaches state k for the first time at the nth step 

after leaving state j. This is called the first-return-probability. Then , 

fjk
(0)

  = 0 

fjk
(1) = pjk

(1) 

We define μii as the mean time between two consecutive transitions to the state i. 

μii =           (2.6) ∑
=

n

i

n
iifi

0

)(*

The limiting probability of reaching an aperiodic state is equal to the reciprocal of the mean time 
between two consecutive transitions to the state. 

νi  =  
iiμ

1
         (2.7) 

 
 
3.  Web page Request Generation Algorithm 

Our algorithm generates a web page request stream that matches the empirically observed 
distributions of relative file popularity and temporal locality. The algorithm distributes the 
requests of each web page in a request vector starting with the most popular web page and 
continuing in the descending order of relative file popularity. The following sub-sections provide 
the technical details of our algorithm. 
 
3.1  Preliminary Definitions 

The inputs to the algorithm are the number of requests to be generated (n) , the number of 
web pages (m) and the request vector v. The algorithm assumes that page i is the ith most popular 
page. Thus 1 is the most popular page and m is the least popular page. The array of integers v is 
filled up with the page requests. 

e.g.:     v = {1,3,5,2,3,2,1} 

We start by filling up the request vector with page 1 and after we are done we fill it up 
with page 2, then with page 3 and so on up till page m. The reason for such a choice is described 
later (see section 6). 
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When we fill the request vector with requests for a certain page, we need to find the 
number of requests to other pages between two consecutive requests to the same page. We define 
inter-request distance as the number of requests between two consecutive requests to the same 
page plus 1. 

 
 
3.2   Outline of the Algorithm 

Let there be m web pages whose popularity follows the Zipf’s law i.e. the probability that 
the next request will be the ith most popular page is: 

p(i) = 
i
Ω

 

Ω =  

m
1...

2
1

1
1

1

+++
        (3.2.1) 

So, if n requests are made, then there will be 

r = 
i

nΩ
          (3.2.2) 

requests for page i. 
 

Before filling up the request vector for page i we do the following. 

a) calculate r    (eqn. 3.2.2) 

b) generate (r - 1) inter-request distances. (see  fill_up in Appendix A) 

For each web page, we start from some position in the request vector, not necessarily the first 
available space. We will discuss later on how we choose this position of the first request (see 
section 5.1). The positions of the successive requests of the same page are calculated using the 
generated inter-request distances. (see Section 4)  Let the position of some request of page i be k 
in the request vector. Let the next inter-request distance be x. Then the next request for i goes in 
the position (k + x) in the request vector. If for some request its calculated position exceeds the 
length of the request vector, then we wrap around and start from the beginning of the request 
vector. Figure 2 illustrates this idea. (see make in Appendix A) 
 
 

Suppose page i is requested 5 times 
The inter-request distances are – {2,3,2,2} 

 
 
 
 
 5 1 2 3 4

 

i   i  i   i  i  

 
 
 
 

start

Figure 1:  Distributing a request for page i in the request vector. 
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3.3  Resolving Clashes 

If in the calculated position of a new request there is already an old request, then there is 
a clash. This clash must be resolved. During the resolving of clashes we would like to maintain 
two invariants. 

a) The distribution of page popularity should be preserved. No extra request should 
be created and no existing request should go unallocated.    
         (3.3.1) 

b) The distribution of inter-request distances for every page should be preserved. 
                       (3.3.2) 

 
To solve this problem we propose the following method. Suppose page i is given the 

position pos and page p is already in that position. Then we put page i in pos and throw page p 
out. Page p must now be accommodated in a new place in the request vector. We find the position 
of the previous request for page p and the location of the next request for page p. Let the distance 
between the previous request for page p and pos be x and the distance between the next request 
and pos be y. In accordance with the second invariant we place the thrown request p in the place, 
which is y places after the previous request and x places before the next request. This maintains 
the inter-request distance distribution. In case, this position is already occupied by some other 
request, then that other request is thrown out and p is inserted in its place. This process continues 
till an empty space is found. However, to avoid an infinite loop, we impose a limit on the number 
of iterations. When this limit is crossed, the thrown request is discarded. If we do not find a 
preceding or succeeding request to the same page in the request vector then we try to 
accommodate the request in an empty space nearby (see adjust in Appendix A). Figure 2 
illustrates this method. 

 

 
 

Figure 2: The adjust procedure  
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3.4  Getting the Starting Position 

Now we come to the question of how to select the starting position for the requests of a 
certain web page. We propose two methods. Any one can be chosen depending upon our 
requirements of speed and accuracy. 

In the first method, the starting position of the first web page is generated randomly. The 
next empty space that comes immediately after the position of the last generated request (not the 
last request in the request vector) is chosen as the starting position of the next web page. If this 
position is not empty then we search within a window of size W (defined in section 5.1). In case 
an empty space cannot be found for the starting position within this window we force it in the 
next position and the thrown out request is again adjusted using the method adjust (see Appendix 
A). 

In the second method, the starting position of each web page is generated randomly. If 
there is already another request in that position, then we search for the next empty space in the 
request vector. 
 
4.  Generating the Inter-request Distances 

Now we come to the problem of generating inter-request distances for a certain page. We 
try to generate the distribution of inter-request distances. During the generation step random 
numbers are picked from this distribution. 
 
4.1  The Inter-request Distance Distribution 

For the stack-distance model (see section 2) we assume that the pages are arranged as a 
push-down stack. If there are m web pages, the size of the stack is m. Consider a given page i. Let 
the random variable X be the distance of the page i from the top of the stack (stack-distance). If X 
is equal to 1, then page i is referenced. We model the distribution of X as a Markov chain. Thus 
these three phrases are synonymous. 

1. page i is at the top of the stack 

2. page i is requested 

3. page i is in state 1 of the Markov chain 

From this Markov chain we try to get the probability of page i being requested at time (t+m) 
given that it requested at time t, with no intervening requests of page i between t and (t+m). This 
probability is the required inter-request distance probability that we want to generate. This is 
equal to the first-return-probability defined in section 3. So the problem reduces to finding the 
sequence of first-return-probabilities of the Markov chain. fii

(1) , fii
(2) , .......  fii

(n) 

To do so let us construct the transition probability matrix P. Let Xn denote the stack-
distance of page i at time n. If Xn=1 page i is at the top of the stack. When the next request is 
generated, the page i will either remain in state 1 if i is requested again or go to state 2 if any 
other page is requested. 

If Xn=j,  1<j<m then if page i is requested it will go to state 1. If any other page, which is 
above i in the stack, is requested it will remain in state j. If a page, which is below i in the stack, 
is requested i will move to state j+1. 

If Xn=m, then if the page i is requested it will go to state 1. If any other page is requested, 
it will remain in state m. 
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Thus the transition probability matrix can be written as 

 
p11   p12 0 0 0 0  . . . . . . . . . . . . . . . . . . . . . . 
p21   p22 p23 0 0 0  . . . . . . . . . . . . . . . . . . . . . . 
p31   0 p33 p34 0 0  . . . . . . . . . . . . . . . . . . . . . . 
p41   0 0 p44 p45 0  . . . . . . . . . . .  . . . . . . . . . . . 

P  =   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
pm-1,1 0 0 0 0 0  . . . . . . . . . . .  pm-1,m-1    pm-1,m 
pm,1 0 0 0 0 0  . . . . . . . . . . . 0 pm,m 

 
 

We can calculate the transition probabilities as follows. 

Let the random variable X denote the stack-distance. The distribution of X is given by the 
lognormal distribution(lgn(x)). (see section 1.1) 

Let gk = Pr(X = k) 

We have the following equations : 

∑
=

m

k
kg

1
= 1         (4.1.1) 

pi,1 = g i  =  lgn(i) ,  1  ≤  i  ≤  m       (4.1.2) 

pi,i =  =   ,  2  ≤  i  ≤  m      (4.1.3) ∑
−

=

1

1

i

k
kg ∑

−

=

1

1

)(lg
i

k

kn

pi,i+1 = =  , 1 ≤  i  ≤   m-1     (4.1.4) ∑
+=

m

ik
kg

1
∑

+=

m

ik
kn

1
)(lg

 
where lgn(x) represents the lognormal distribution with the parameters given in 1.1.3. 

From the transition probability matrix P, we can calculate p11
(n) by calculating P(n). Next 

we need to calculate the first-return-probabilities from the transition probabilities. 

 
4.2  Methods to Calculate the First-return-probabilities 

We designed two methods to calculate first-return-probabilities. 

Method I : 

Let us define the generating functions. 

Pii(s) =  n

n

n
ii sp *

0

)(∑
∞

=

Fii(s) =  n

n

n
ii sf *

0

)(∑
∞

=

and 
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The relationship between Pii(s) and Fii(s) can be expressed as 

Pii(s) =  
1

 1- Fii(s)     or   Fii(s)  =  1 -  
1

 Pii(s)      (4.2.1) 

We know the transition probabilities  p11
(1), p11

(2), p11
(3), … . So we can calculate the 

coefficients of Pii(s). We generate a predetermined number of coefficients and then evaluate the 
values of Pii(s) for different values of s between -1 and +1. This gives us the values of Fii(s) for 
the corresponding values of s.  Then we use simple polynomial interpolation of this sequence to 
get the coefficients of the generating polynomial Fii(s). This method is fast but it is not very 
accurate. It was observed that no more than 20 coefficients could be generated. 
 
Method II: 

Consider the same number of pages m arranged in any order in a push-down stack. We 
generate the stack-distances using a lognormal distribution (see section 1.1). Using these stack 
distances, we generate a web page request stream. 

Now consider page i. For page i, we can find out the inter-request distances from the 
request stream. The distribution of these inter-request distances yields the first-return-
probabilities (see section 2). So by finding the distribution of the inter-request distances for page 
i, the first-return-probabilities can be found out. 

Thus using either of the above two methods, the first-return-probabilities can be 
calculated. The question arises: How many values to calculate? 
 
 
4.3  Calculating the Number of First-return-probabilities 

Consider the case of page1, the most popular page. The most popular page has the largest 
span. The algorithm for allocating requests in the request vector starts at a certain point in the 
vector and wraps around the end of the vector. The future requests for a certain page should not 
cross the position of the first request allocated for that page. Otherwise, the inter request distances 
will violate invariant 3.3.2. We derive a relation to ensure that this property is achieved. Let z be 
the mean inter-request distance calculated by just considering the fact that page popularity 
follows the Zipf distribution (section 1.1). Let l be the mean inter-request distance calculated by 
the Markov chain model (section 4.2). Let the total number of requests generated be n. 

Number of requests for page 1 from the Zipf model is : 
z
n

   (4.3.1) 

Number of requests for page 1 from the analysis in 4.2 : 
l
n

   (4.3.2) 

If both the model for page popularity and temporal locality are to be followed then there must be 
an equality of (4.3.1) and (4.3.2). This equality also ensures that the most popular page is 
distributed uniformly in the request stream. 

Thus, 

z = l          (4.3.3) 

We can calculate z as follows: 
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The probability of occurrence of page 1 is 
1
Ω

 = Ω. Thus the number of requests to page 1 is nΩ. 

Thus 

Ω
=⇒

Ω=

1z

n
z
n

          (4.3.4) 

If the number of first return probabilities considered is d then l is given by : 

∑
=

=
d

i

ifil
1

)(
11*         (4.3.5) 

So if (4.3.3) is to hold then: 

∑
=

=
Ω

d

i

ifi
1

)(
11*1

        (4.3.6) 

By (3.2.1) 

∑
=

=+++
d

i

ifi
m 1

)(
11*1.....

2
1

1
1

      (4.3.7) 

Thus, given the number of pages m, we can calculate the number of coefficients required, d. A 
plot of log(d) versus log(m)  is shown. 

 
 
 
 

Figure 3: log-log plot of number of coefficients  vs. number of pages 
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We find this graph to be approximately linear. From the above graph, we find the relation 
between m and d as 

log(d)  =  0.24*log(m) + 0.86       (4.3.8) 

Thus we can use (4.3.8) to calculate the number of coefficients required given the number of web 
pages. 

Hence using the methods of (4.2) and the result of (4.3.8) we can generate the inter-
request distance distribution. To generate inter-request distances we just pick random numbers 
from this distribution (see get_rand() in Appendix A). 
 
 
5.  Salient Features of the Algorithm 

In this section we analyze some features of the algorithm presented in section 3. We 
allude to the pseudo code in Appendix A. Some design decisions have been taken that bound the 
worst case complexity and significantly decrease the running time and improve the quality of 
output. Sections 5.1 and 5.2 discuss the schemes for filling up page requests. While filling up 
these pages it is sometimes necessary to search for an empty slot or to adjust the requests in the 
request vector. We derive bounds for the number of iterations in these procedures in sections 5.3 
and 5.4. Sections 5.5 and 5.6 discuss the quality of the output and section 5.7 concludes with the 
complexity measures. 

NOTE:  The term ‘first request of a page’ means the first request of a page allocated in the 
request vector by our algorithm. It should not be confused with the first request of a page in the 
request stream. We might starting allocating page i from the 990th  request in a stream of 1000 
requests. Then we might wrap around and allocate pages 1, 50, 100. The ‘first request of page i’ 
is 990 and the ‘first request of page i in the request stream’ is 1. 
 
 
5.1  Position of the First Request of a Page 

We have presented two solutions. The first solution remembers the position of the last 
request of the last page allotted. For the first request of the present page it searches W positions 
after the last request for an empty space. If an empty space is found then the first request for the 
present page is inserted in that space and the normal algorithm continues. If an empty space is not 
found then at the (W + 1) th position after the last request, the present page is inserted and adjust is 
called. It is to be noted that whenever a position exceeds the number of requests it wraps around 
and starts from the beginning. 

For the second solution we start at a random position while allotting the first request of a 
page. If this position is empty then we insert the page. If it is not then we search for the nearest 
empty slot. 

After the algorithm terminates, some slots in the request vector might remain unfilled. 
This is because we have placed a limit on the number of iterations in adjust (see section 5.3). The 
goal is to minimize the number of unfilled positions after the algorithm ends. So we perform a 
linear search for the first request of a page instead of calling adjust. This was found to reduce the 
number of unfilled positions in the request vector. Note that by the Zipf distribution the last few 
pages will occur only once. By the time they are allocated the request vector is almost full. So the 
number of clashes will be very high. It is easier to do a linear search and find an empty slot. 
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There are tremendous performance advantages in the first approach. This is because the 
region of the request vector in which the requests for a certain page are being filled up is the least 
congested part of the request vector. Thus clashes are always at a minimum. Because of this 
property we can provide an upper bound on the constant W defined earlier. A good estimate of W 
is 3*d (4.3.8). Most of the time we find an empty space within this window size. Since we bound 
W by a constant the asymptotic complexity becomes O(nm0.24) (see Appendix B). This approach 
ensures a certain amount of spatial locality. However, in this approach we sacrifice a bit of 
uniformity and randomness in request streams. 

The second approach is far slower. The property of least congestion observed in the first 
approach is not valid here as the first requests to be allocated for any page start at random 
positions. This necessitates searching the full request vector for an empty space while allocating 
the first request of a page, making the asymptotic complexity O(nm) (see Appendix B). Although, 
this is far slower than the previous algorithm it shows uniformity and randomness in requests. 
 
5.2  The Order of Filling up of Pages 

We always start filling up the request vector with pages in descending order of 
popularity.  Popular pages have bigger spans. Span refers to the distance between the first and last 
request of the same page. Less popular pages don’t feel the effects of congestion due to allocation 
of other less popular pages due to their small spans. However, more popular pages with bigger 
spans are distributed globally and feel the effects of all other pages allocated before them. 
Experimental results have shown an improvement in speed of a factor of 7 for this scheme 
compared to the scheme where page requests are allocated in ascending order of popularity of 
pages. 
 
5.3  Limit on the Number of Iterations in adjust 

It was experimentally observed that the average number of iterations in the method adjust 
was about 8.5. This was independent of the number of pages and requests. So, we set the limit on 
the number of iterations to a safe constant 100. This is a constant irrespective of the input 
parameters. 
 
5.4  Limit on the Number of Iterations in get_new_position 

In the procedure get_new_position the preceding and succeeding requests of a web page 
are found out. It is to be noted that the maximum inter-request distance is d (4.3.8). So there is no 
need to search positions, which have a distance greater than d from the present position. 

 
5.5  Loss Percentage 

The loss percentage is the number of slots in the request vector that could not be 
allocated. Some loss is incurred due to a limit on the number of iterations in adjust. The number 
of unfilled slots is typically less than 1% of the number of requests. 
 
5.6  Increase in Accuracy with Increase in Number of Pages 

As the number of pages increase the number of coefficients of the first-return-probability 
distribution also increase (4.3.8). Thus the inter-request distance distribution becomes more 
accurate. Hence, it follows from section 4.1 that the final stack-distance distribution also becomes 
more accurate. 
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5.7  Complexity of the Algorithm 

The complexity is analyzed in Appendix B. The fast version of the algorithm runs in 
O(n*m0.24) time. This is suitable for simulation purposes. It runs in linear time in the number of 
requests. This algorithm has a very fast running time owing to the fact that m0.24 is a slowly 
growing function. 

The slow version runs in O(nm) time. This generates high quality request streams. High-
speed machines are required to execute this algorithm or alternatively workstations can be used to 
generate traces that can be used later for simulation. 

 

6.  Results 
We executed the fast version of the algorithm for different combinations of requests and 

pages. As a rule of thumb we assumed the number of requests to be ten times the number of 
pages. The experiments were conducted on a 866Mhz, 256MB RAM, Pentium III machine 
running RedHat Linux 7.1. The following table shows the execution times of the various 
experiments conducted. 
 

Number of Pages ( m ) Number of requests ( n ) Execution time  (sec) 
3,000 30,000 0.02 

10,000 100,000 0.08 
20,000 200,000 0.17 
50,000 500,000 0.48 

100,000 1,000,000 1.03 

As we can see, the complexity of the algorithm is almost linear in the number of requests. 

The Zipf distribution is guaranteed by the algorithm (see 3.3.1). Here are the plots of the 
stack-distance distribution. The observed values are shown as dotted lines. 
 

 

Fig 4: Stack-distance distribution for 
 3,000 pages 
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Fig 5: Stack-distance distribution 
for 10,000 pages 

 
 
 
 
 

 

Fig 6: Stack-distance distribution 
for 20,000 pages 
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Fig 7: Stack-distance distribution 
for 50,000 pages 

 
 
 
7.   Conclusion 

In this paper we have presented an algorithm to generate high quality web request 
streams. The work is based on analytical models derived from measurements of web traffic. The 
major characteristics of web request streams have been incorporated into our method. The 
properties of the traces generated are shown to follow the empirically observed distributions of 
page popularity and temporal locality. The algorithm guarantees the Zipf distribution of page 
popularity and the results show the stack-distance distribution to mimic very closely the ideal 
lognormal distribution very closely. We have two versions of the algorithm presented in this 
paper. One is the fast algorithm whose worst-case complexity is linear in the number of requests 
and is a slowly growing function of the number of pages. This algorithm explicitly incorporates 
spatial locality into the request stream. The other version is the slow algorithm, whose complexity 
is linear in the number of request and linear in the number of pages. This generates uniform and 
homogenous request streams. 

Along with the quality of traces the algorithm is also computationally efficient and 
scalable. The quality is maintained even for a large number of pages and requests. In fact the 
quality of the traces improves with increase in the number of pages. 

As indicated in section 1.1 spatial locality needs to be incorporated into the algorithm. 
Even though the fast version of the algorithm guarantees some spatial locality, it does not strictly 
conform to analytical models of spatial locality. Self-similar models of stack distance need to be 
explicitly incorporated. 

To summarize, the algorithm presented in this paper generates request streams in 
accordance with analytical models of web traffic. It is scalable to a large number of requests and 
it requires minimal amount of memory and processor time. The accuracy, scalability and 
computational efficiency of our algorithm attest its suitability for large-scale WAN simulation. 
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Appendix A  : Pseudo-code of the algorithm 
 
Global variables : 
n - number of requests to be generated 
m - number of pages 
d - number of coefficients in the distribution of first-return-probabilities (section 4.3) 
int requests[ ] - page request vector 
int distances[ ] - array of inter-request distances 
double probs[ ] - cumulative probabilities of the first-return-probabilities 
 
external function : 
get_coeff(double coeffs[ ] , int i)  - fills up the coeffs array with the first i first-return-probabilities 
 
initialize() 
{ 
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for i ← 0 to (n-1) loop 
distances[ i ] ← 0 
requests[ i ] ← -1 

end loop 
 

double coeff[d ] 
get_coeff( coeff, d) 
probs[ 0 ] ←  0.0 

 
for l ←  1 to size loop 

probs[ l ] = coeff [l-1] 
end loop 

 
for j ← 1 to size loop 

probs[ j ] += probs[ j-1] 
end loop 

} 
 
// generates the request vector 
generate (distances[ ], requests[ ]) 
{ 
1 for i ← 1 to m loop 
2  fill_up ( i, distances ) 
3  make ( i, requests, distances ) 
4 end loop 
} 
 
// fills up the distance array with the inter-request distances 
fill_up (page, distances[ ]) 
{ 
// calculate the number of inter-request distances 
1 spaces = num_occur(i) - 1 
 
// fill up the distances array 
2 for i ← 1 to (spaces – 1)  loop 
3  distances[ i ] = get_rand( i ) 
4 end loop 
 
} 
 
// fills up the request vector 
// starting position is selected using the faster method 
make (page, requests[ ], distances[ ]) 
{ 
1 static int pos = rand() % n 

 
// finds the first free position within the window of 3*d 

2 for i ← 1 to (3 x d) loop 
3  if ( free(request[pos] ) 
4   flag ← 1 
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5   break 
6  end if 
7  pos++ 
8  if ( pos = n ) pos ← 0  // wrapping around 
9 end loop 
 
10 if ( !flag ) adjust ( pos, page, requests )  // if no empy space is found 
11 else requests[ pos ] ← page 
 
12 spaces ← num_occur(page) – 1 
13 if (spaces = 0) return   // there is just one request 
 
// filling up the rest of the requests 
14 for j ← 0 to (spaces – 1) loop 
15 pos  ← pos + distances[ j ]  // finding the position of the next request 
16  if (pos ≥ n )  pos ← pos % n // wrapping around 
17  if ( free (requests[ pos ] )  requests[ pos ] ← page 
18  else adjust( pos, page, requests) 
19 end loop 
 
} 
 
// permutes the request vector in accordance with the invariants ( 3.3.1 and 3.3.2 ) 
 
const LIMIT ← 100       // (see section 5.2 ) 
adjust (pos, page, requests[ ] ) 
{ 
1 limit ← 0 
2 thrown ← requests[ pos ] 
3 requests [ pos ] ← page 
 
4 while (thrown != -1 ) 
5  i ← get_new_position(pos, thrown, requests) 
6  swap( requests[ i ], thrown) 
7  if (limit = LIMIT ) return 
8  limit++ 
9 end while 
 
} 
 
// gets a new position for a request in accordance with the invariants ( 3.3.1 and 3.3.2 ) 
 
int get_new_position (pos, page, requests[ ]) 
{ 
// find the preceding request for the same page 
1 lower ← -1 
2 for i ← (pos – 1) to max(0, pos – m ) loop 
3  if ( free(requests[ i ] ) 
4   lower ← i 
5   break 
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6  end if 
7 end loop 
 
// find the succeeding request for the same page 
8 upper ← -1 
9 for j ← (pos+1) to min(n-1, pos+m) loop 
10  if (free(requests[ i ] ) 
11   upper ← i 
12   break 
13  end if 
14 end loop 
 
// if upper or lower don’t exist 
15 if ( (lower = -1) or (upper = -1) ) 
16  for k ← max(0, pos-3) to min (n-1, pos+3) loop 
17  if (k=pos) continue 
18   If (free(requests[ k ]) return k 
19  end loop 
 
20  if (pos < (n-2) ) return (pos+2) 
21  else return (pos – 2) 
22 end if 
 
// calculate the new position based on invariant (3.3.2) 
23 x ← lower + upper – pos 
 
// handling special cases 
24 If (x = pos) pos++ 
25 If (pos = upper) pos = (pos+1)%n 
 
26 return pos 
 
} 
 
// finds the number of requests for page i 
int num_occur( int i ) 
{ 

val ← 
i
Ω

 

return ( val x n ) 
} 
 
// generates a random number following the distribution of first-return-probabilities (see section 
4.2) 
 
int get_rand() 
{ 
1 val ← frand()  // returns a random number between 0 and 1 
2 i  ← binary_search(probs, val) 
3 return i 
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} 
 
Another make method used in the slow algorithm, where the starting position is selected using the 
second method.  (see section 3.4) 
 
make (page, requests[ ], distances[ ]) 
{ 
 

// position of the first request of a page 
1 pos ← rand() % n 

 
// find the next free slot 

2 for i ← 1 to n loop 
3  if (free(request[i]) 
4   flag ← 1 
5   break 
6  end if 
7  if (pos = n) pos ← 0   // wrap around 
8 end loop 
 
9 if (!flag return)    // no empty space found 
10 requests[pos] = page 
 
11 if (spaces = 0) return   // this page just had 1 request 
 
12 for j ← 0 to (spaces – 1) loop 
13  pos  ← pos + distances[ j ] 
14  if (pos ≥ n )  pos ← pos % n // wrap around 
15  if ( free (requests[ pos ] )  requests[ pos ] ← page 
16  else adjust( pos, page, requests) 
17 end loop 
 
} 
 
 
Appendix B : Complexity of the algorithm 
 
The parameters of the algorithm are : 

• n - number of requests 
• m - number of pages 
• d - number of first return probabilities (see section 4.3) 

By equation 4.38 : O(log(m)) ↔ O(log(d)) 
Let fi be the number of requests for page i. 

∑ =
i

i nf  

 
1. The complexity of the fast algorithm. This uses the first make method. 
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function complexity explanation 

get_rand() O(log(m)) (2) takes O(log(d)) time. Hence, the function 
takes O(log(m)) time. 

num_occur() O(1) There are no loops or function calls. 

fill_up(i , array[ ]) O(fi * log(m)) (3) is executed fi times. 

get_new_position(i, j, 
array[ ]) 

O(m0.24)) (2) - (7) takes O(d) time 
(9) - (14) takes O(d) time 

rest takes O(1) time 
O(d) ↔ O(m0.24)   (eqn  4.3.8) 

adjust(i, ,j, array [ ]) O(m0.24) (5) is executed at most LIMIT times 

make(i, array1[ ] , 
array2[ ]) 

O(fi * m0.24) (2) - (9) takes O(d) time 
(10) takes O(d) time 

(18) is executed O(fi) times. 
(14) - (19) takes O(fi * d) time 

O(fi * d) ↔ O(fi * m0.24) 
generate(array1[ ], 

array2[ ]) 
O(n * m0.24) (2) - (3) takes O(fi * (m0.24 + log(m)))  ↔  O(fi * 

m0.24) time 
(1) - (4) takes O((∑

i
if ) * m0.24 )  ≡ 

O(n * m 0.24)  time 
 

2. The complexity of the slow algorithm. This uses the second make method 
 

function Complexity explanation 

make(i, array1[ ] , 
array2[ ]) 

O(n + fi * m0.24) (2) - (8) takes O(n) time 
(16) takes O(d) ↔ O(m0.24) time 

(12) - (17) takes O(fi * m0.24) time 
 

generate(array1[ ], 
array2[ ]) 

O(nm) (2) - (3) takes O(n + fi * (m0.24 + log(m))) ↔ 
O(n + fi * m0.24) time 

(1) - (4) takes O(nm +  (∑
i

if ) * m0.24) ↔ 

O(nm + n * m0.24) ↔ O(nm) time 
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